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Abstract

Informally, a communication protocol is sender k - anonymous if it can guarantee that an
adversary, trying to determine the sender of a particular message, can only narrow down its
search to a set of k suspects. Receiver k-anonymity places a similar guarantee on the receiver:
an adversary, at best, can only narrow down the possible receivers to a set of size k. In this paper
we introduce the notions of sender and receiver k-anonymity and consider their applications.
We show that there exist simple and efficient protocols which are k-anonymous for both the
sender and the receiver in a model where a polynomial time adversary can see all traffic in the
network and can control up to a constant fraction of the participants. Our protocol is provably
secure, practical, and does not require the existence of trusted third parties. This paper also
provides a conceptually simple augmentation to Chaum’s DC-Nets that adds robustness against
adversaries who attempt to disrupt the protocol through perpetual transmission or selective
non-participation.

1 Introduction

Anonymous or untraceable communication protocols have been studied extensively in the scientific
literature (e.g. [4, 5, 16, 19]). These protocols address the problem of concealing who communicates
with whom, as in the case of letters from a secret admirer. The adversary, trying to determine
the sender or recipient of a message, is allowed to see all the communications in the network, so
a protocol for anonymous communication even allows Bob to send a secret love letter to Eve, the
network administrator. If used in practice, anonymous communication would have many important
applications such as guaranteeing anonymous crime tip hotlines or allowing “whistle blowers” inside
corrupt organizations to leak secrets to the press.

The goal is usually to guarantee full anonymity: an adversary looking at the communication
patterns should not learn anything about the origin or destination of a particular message. To gain
efficiency we concentrate on a weaker goal, k-anonymity: the adversary is able to learn something
about the origin or destination of a particular message, but cannot narrow down its search to a set
of less than k participants. In other words, k-anonymity guarantees that in a network with n honest
participants, the adversary is not able to guess the sender or recipient of a particular message with
probability non-negligibly greater than 1/k, where k is a constant smaller than, but otherwise not
related to n. We show that, in our adversarial model, there exists a k-anonymous communication
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protocol that is far simpler and more efficient than any known fully anonymous communication
protocol.

While k-anonymity is a weaker guarantee, it is still sufficient for a variety of applications. For
example, in the United States legal system, 2-anonymity would be enough to cast “reasonable
doubt,” thus invalidating a criminal charge, while 3-anonymity would be enough to invalidate a
civil charge, in the absence of other evidence. This is especially relevant after a federal judge in the
United States ordered Verizon Communications, a large ISP, to disclose the identity of an alleged
peer-to-peer music pirate — a legal decision that could make it easier for the music industry to
crack down on file swapping [3]. If the participants in the peer-to-peer network were communicating
k-anonymously, the music industry could not prosecute individuals in this manner. k-anonymity
is also enough for the protection of privacy in everyday transactions, as it effectively breaks data
profiling techniques.1

The protocol presented in this paper is extremely efficient and provably secure in a strong
adversarial model: we assume that the adversary can see all the communications between the
participants and can control any constant fraction (up to 1/2) of the participants. Participants
owned by the adversary can act arbitrarily and attempt to ruin the communication protocol in any
possible way — i.e., the adversary not only tries to determine the sender or recipient of particular
messages, but also tries to render the anonymous communication protocol useless. We assume
the adversary is computationally bounded (polynomial time) and non-adaptive (the adversary must
choose which participants to corrupt before the execution of the protocol). We also assume that
the network is not adversarially unreliable: messages between communicating parties are always
delivered.2 This assumption is mostly for simplicity, as our protocol can be used on top of schemes
that guarantee reliable communication in an adversarially unreliable setting (e.g. [7]) at the expense
of efficiency.

For the most part, the study of anonymous communication has focused on efficiency rather than
on provable security, and many of the current systems fail when confronted by sufficiently powerful
adversaries [20]. Our protocol is provably secure in a strong adversarial model and achieves part
of its efficiency by allowing the anonymity guarantee to vary: k can be any number between 1
and n (the number of participants in the network). The efficiency of our protocol is related to
the size of k and for small values of k the protocol is efficient enough to be used in practice.
However, it is important to mention that, while k-anonymity is sufficient in many settings, there
are cases where full anonymity is required (e.g. ransom notes). If k equals n (i.e., in the case of full
anonymity) our protocol is simpler and as efficient as any known protocol that is provably secure
in our adversarial model. In this way, our protocol can also be viewed as a conceptually simple
and efficient augmentation to Chaum’s DC-Nets that adds robustness against adversaries who
attempt to disrupt the protocol through perpetual transmission or selective non-participation.

Related Work

Below we describe a few of the most influential solutions to the anonymous communication problem
and compare them to our proposal.3

1The concept of k-anonymity in fact comes from the privacy literature [18].
2As long as the network is not adversarially unreliable, there exist protocols (such as TCP) that provide reliable

delivery.
3This section is only meant to provide a sample of the previous work so as to put our proposal in context; it is

not meant to provide a complete description of the literature. See [9] for a more thorough listing.
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DC-Nets [4, 19]. DC-Nets is an anonymous broadcast protocol that bases its anonymity on
the strength of a secure multiparty sum computation. In this fashion, it is one of the few systems
that provides provable security in the absence of trusted parties. Although the original system by
Chaum [4] was susceptible to certain attacks, a later variant by Waidner [19] provides an elabo-
rate system of traps and commitments that guarantees robustness and anonymity. However, the
poor scalability of DC-Nets makes it unsuitable for medium or large-scale use. In particular, in a
network of n users, DC-Nets incurs a cost of Ω(n3) protocol messages per anonymous message in
every case. Our protocol is similar to DC-Nets, but with a much simpler and efficient method of
guaranteeing robustness, better scaling properties, and the ability to amortize message complexity
over several anonymous messages. Our adversarial model is similar to that assumed in the DC-
Nets literature except that we restrict the adversary to run in polynomial time.

Mix-Nets [5] and Onion Routing. Mix-Nets, introduced by David Chaum in 1981, was
one of the first concepts for anonymizing communication. The idea is that a trusted “Mix” shuf-
fles messages and routes them, thus confusing traffic analysis. Chaining Mixes together to form
a path, combined with Mix-to-Mix (Onion Routing) and end-to-end encryption, offers a form of
provable security against a completely passive adversary [5]. Mix-Nets requires the existence of
semi-trusted nodes: security is guaranteed as long as one Mix (out of a small constant number of
them) is honest.

In every Mix-Nets proposal, an active adversary who participates in the system is able to
degrade the anonymity of selected messages and users with non-negligible probability [14], and
also degrade efficiency through excessive, anonymous usage of its capabilities [12] and selective,
undetectable non-participation [20].

Compared to Mix-Nets protocols, our solution incurs fewer network latencies, requires no spe-
cial trusted nodes, and is provably secure against non-participating active adversaries. However,
our solution incurs higher communication and computational complexity.

Crowds [16]. Similar to Mix-Nets, Crowds provides paths to disguise the originator of a
message. Unlike Mix-Nets, however, paths in Crowds are determined randomly by the ma-
chines through which a message passes, rather than by the originator of the message. Crowds
provides sender probable innocence against an adversary who controls a certain fraction of the par-
ticipants.4 However, Crowds provides no protection against a global eavesdropper. k-anonymity
can be seen as a further refinement of probable innocence and in particular, our protocol for the
case of 2-anonymity is competitive with Crowds in terms of round complexity, slightly worse in
communication complexity and incurs much heavier computational costs, while providing provable
security in a much stronger adversarial model.

CliqueNet [17]. CliqueNet combines small DC-Nets with a routing layer to mitigate the scal-
ability problems of DC-Nets while also preserving some of its anonymity guarantees. CliqueNet
has the undesirable feature, however, that an adversary who controls ` network nodes can com-
pletely compromise the anonymity of ` − 1 other nodes of its choice. Furthermore, CliqueNet’s
routing layer induces a high amount of unnecessary network latency and is not secure against

4A protocol provides sender probable innocence if the receiver cannot identify the sender with probability greater
than 1/2.
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non-participation, allowing an adversary who controls a few nodes to partition the network. Our
protocol is similar to CliqueNet in that we also divide the network into small DC-Nets-like
components, but different in that we provide provable security against strong adversaries.

Organization of the Paper

Section 2 presents the basic cryptographic notions and definitions we will need for the paper.
Section 3 introduces the definitions for k-anonymous communication, Section 4 introduces the novel
protocol that achieves k-anonymity for both the sender and the receiver, and Section 5 delineates
how to construct a communications network that can guarantee k-anonymity. Finally, Section 6
concludes with a discussion and some open questions.

2 Preliminaries

2.1 Notation

A function µ : N → [0, 1] is said to be negligible if for every c > 0, for all sufficiently large n,
µ(n) < 1/nc. Let S be a set, then x ← S denotes the action of choosing x uniformly from S. Uk

denotes the set of k-bit strings. We denote the set of integers {1, . . . , n} by [n]. We will use Zm

to denote the additive group of integers modulo m, and Z∗m to denote the multiplicative group of
integers modulo m. When we say split x ∈ Zm into n random shares s1, . . . , sn we mean choose
s1, ...sn−1 uniformly at random from Zm and set sn = x− (s1 + · · ·+ sn−1) mod m. For parties P
and Q, the notation P −→ Q : M denotes party P sending message M to party Q.

2.2 The Model

We assume a network of n parties {P1, . . . , Pn}, of which a fraction β < 1/2 are controlled by
a non-adaptive polynomial time adversary, who may also monitor the communications between
all parties. We assume the existence of a trusted public-key infrastructure which allows secure
authenticated channels between all pairs of parties. Otherwise, parties under the control of the
adversary may behave arbitrarily (the remaining honest parties are constrained by the protocol).
We also assume that the network is reliable: messages between parties are always delivered.

2.3 Pedersen Commitments

Let p and q be primes such that q divides p − 1, and let g, h ∈ Z∗p have order q. (It is easy to
see that both g and h generate the unique subgroup of order q in Z∗p.) The following commitment
scheme will be used throughout the paper; it is due to Pedersen [13] and is based on the difficulty
of finding logg(h) (all the multiplications are over Z∗p):

• To commit to s ∈ Zq, choose r uniformly from Zq and output Cr(s) = gshr.

• To open the commitment, simply reveal s and r.

For any s, the commitment Cr(s) = gshr is uniformly distributed over the unique subgroup of order
q in Z∗p, so that Cr(s) reveals no information about s. Furthermore, the committer cannot open
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a commitment to s as s′ 6= s unless she can find logg(h). Hence, this is a perfectly hiding, com-
putationally binding commitment scheme. In addition, this commitment scheme is homomorphic:
given commitments Cr1(s1) and Cr2(s2), we have that Cr1(s1)Cr2(s2) = Cr1+r2(s1 + s2).

2.4 Zero-Knowledge Proofs

Informally, a zero-knowledge proof is a protocol which allows a prover program P to convince a
verifier program V of the veracity of a statement while giving the verifier no additional knowledge.
For now we will only require security in the case of an honest verifier (i.e., the verifier follows the
program V ). There exist standard techniques ([10], [2]) to convert the particular type of honest-
verifier zero-knowledge proof that we will use into a proof which is secure even against a dishonest
verifier.

Definition 1. A protocol (P, V ) is honest verifier zero-knowledge if there is an efficient program
S (a simulator) such that the output of S(x) and the view of V upon interaction with P (x) are
indistinguishable.

An example is the following protocol for proving knowledge of the discrete logarithm of x =
hr mod p (where q divides p− 1 and p, q are prime) originally due to Chaum et al. [6]:

Protocol 1. Zero-knowledge proof of knowledge for discrete logarithms

1. P picks σ ← Zq,
P −→ V : y = hσ mod p

2. V −→ P : z ← Zq

3. P −→ V : w = rz + σ mod q

4. V accepts if xzy = hw

The honest-verifier simulator for this protocol first selects the values z, w ← Zq and sets y =
hw/xz mod p, then outputs the conversation y, z, w. A prover can cheat in this protocol only with
very small probability, 1/q.

2.5 Secure Multiparty Sum

A secure multiparty addition protocol allows parties P1,
. . . , Pn, each with a private input Xi ∈ Zm, to compute X = X1 + . . . + Xn in such a way that Pi,
regardless of its behavior, learns nothing about Xj , i 6= j, except what can be derived from X. The
following commonly-known scheme implements secure multiparty addition: each party Pi splits Xi

into n random shares si,1, . . . , si,n such that
∑

j si,j = Xi and sends share si,j to party j; later all
parties add every share that they have received and broadcast the result. It is easy to see that the
sum of all broadcasts equals X1 + . . . + Xn, and that it is impossible for party j to learn anything
about Xi (for i 6= j).

For the rest of this paper, we use the following modification of the above scheme. The commit-
ments help ensure that all parties adhere to the protocol (e.g., parties shouldn’t be able to cheat
by sending inconsistent shares):
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Protocol 2. Secure Multiparty Sum

1. Commitment Phase:

• Pi splits Xi ∈ Zq into n random shares si,1, ..., si,n

• Pi chooses ri,j ← Zq

• Pi computes commitments Ci,j = Cri,j (si,j)

• Pi broadcasts {Ci,j : 1 ≤ j ≤ n}
2. Sharing Phase:

• For each j 6= i,
Pi −→ Pj : (ri,j , si,j).

• Pj checks that Cri,j (si,j) = Ci,j

3. Broadcast Phase:

• Pi computes the values Ri =
∑

j rj,i mod q and Si =
∑

j sj,i mod q

• Pi broadcasts (Ri, Si)

• All players check that CRi(Si) =
∏

j Cj,i mod p

4. Result:
Each player computes the result as X =

∑
i Si mod q, computes R =

∑
i Ri mod q and checks

that CR(X) =
∏

i,j Ci,j mod p

Note that as long as every party transmits something, the broadcast does not need to be reliable
(i.e. it does not matter if an adversary conspires to make two different players get different values);
because of the use of commitments, either some value fails a check for some honest player, or the final
result is identical to another instance of the protocol where the adversary does not send different
messages (a rigorous proof of this fact appears in the Appendix). This protocol is susceptible to
only one kind of disruptive attack: selective non-participation, in which an adversary either does
not send some protocol messages to a participant or claims that it has not received any message
from that participant. As the protocol is stated, there is no way to tell whether the sender failed to
send a message or the receiver is falsely claiming that it didn’t receive it. Selective non-participation
will be dealt with in later sections.

Secure multiparty addition and anonymous communication are related (an observation which
seems to be due to David Chaum and forms the basis of DC-Nets), in that a protocol for secure
multiparty addition can be used to perform anonymous broadcast. Assume that party j wants
to broadcast the message Xj 6= 0 anonymously, while the other parties do not wish to broadcast
anything; then by performing a multiparty addition with Xi = 0 (for i 6= j), all the parties learn
X1 + . . . + Xn = Xj , but nobody learns where Xj came from. If more than one party tries to
transmit at the same time, however, a collision occurs and the parties have to try again. For this
reason DC-Nets use a complicated reservation mechanism to keep the adversary from jamming
the channel: jamming can occur when the adversary controls a participant and simply sends a
message at every time step. Our protocol is also based on secure multiparty sum computations,
but one of the novel aspects of our work is the relatively simple mechanism that we use to prevent
the adversary from jamming the channel.
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3 Definitions

An anonymous communication protocol for message space M is a computation among n parties
P1, . . . , Pn, where each Pi starts with a private input (msgi, pi) ∈ (M× [n]) ∪ {(nil, nil)}, and
each party terminates with a private output from M∗. To communicate, time will be split into
rounds and the protocol will be run at each round. Intuitively, at the end of a round each Pi should
learn the set of messages addressed to him ({msgj : pj = i}), but not the identity of the senders.

We let H ⊂ {P1, . . . , Pn} denote the set of honest parties. We denote by P(P1(msg1, p1), . . . ,
Pn(msgn, pn)) the random variable distributed according to the adversary’s view of the protocol P
when each Pi has input (msgi, pi). We denote by P(Pi(msgi, pi), ∗) the adversary’s view of P when
Pi has input (msgi, pi) and the other inputs are set arbitrarily.

3.1 Full Anonymity

Definition 2. A protocol P is sender anonymous if for every pair Pi, Pj ∈ H, and every pair
(msg, p) ∈ (M× [n]) ∪ {(nil, nil)}, P(Pi(msg, p), ∗) and P(Pj(msg, p), ∗) are computationally
indistinguishable.

That is, a protocol is sender anonymous if the adversary may not distinguish between any of
the honest parties as the sender of a message, regardless of who the receiver is; i.e., the adversary
“gains no information” about the sender.

Definition 3. A protocol P is receiver anonymous if for every P ′ ∈ H, for every msg ∈ M and
every Pi, Pj ∈ H, P(P ′(msg, Pi), ∗) and P(P ′(msg, Pj), ∗) are computationally indistinguishable.

According to the previous definitions, the trivial protocol in which no party transmits anything
is both sender and receiver anonymous. Non-triviality is captured by Definition 6 below.

Assuming that the protocol is non-trivial (i.e., useful), sender anonymity requires every honest
party, even if they have no message as an input, to send at least one protocol message per anonymous
message delivered.Thus any protocol which is sender anonymous has a worst-case lower bound of
n protocol messages per input message, since in the worst case, all parties but one have input
(nil, nil). If n is large, this lower bound makes it unlikely that a system providing full anonymity
can be fielded in practice.

3.2 k-Anonymity

Definition 4. A protocol P is sender k-anonymous if it induces a partition {V1, . . . , Vl} of H such
that:

1. |Vs| ≥ k for all 1 ≤ s ≤ l; and

2. For every 1 ≤ s ≤ l, for all Pi, Pj ∈ Vs, for every (msg, p) ∈ (M × [n]) ∪ {(nil, nil)},
P(Pi(msg, p), ∗) and P(Pj(msg, p), ∗) are computationally indistinguishable.

That is, each honest party’s messages are indistinguishable from those sent by at least k − 1 other
honest parties.

Definition 5. A protocol P is receiver k-anonymous if it induces a partition {V1, . . . , Vl} of H
such that:
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1. |Vs| ≥ k for all 1 ≤ s ≤ l; and

2. For every 1 ≤ s ≤ l, for all Pi, Pj ∈ Vs, for every P ′ ∈ H, msg ∈ M: P(P ′(msg, Pi), ∗) and
P(P ′(msg, Pj), ∗) are computationally indistinguishable.

That is, each message sent to an honest party has at least k indistinguishable recipients.

3.3 Robustness

In addition to the anonymity guarantees, we will require that the communication protocol be
robust against an adversary trying to render it useless. We capture this intuition with the notion
of robustness.

Definition 6. Let α ∈ [0, 1]. A protocol P is α-robust if in each round, the protocol satisfies at
least one of the following conditions:

Fairness: For all P ′ ∈ H and for all (msg, i) ∈ (M × [n]), if P ′ has as input (msg, i), the
probability (over the randomness of P ′) that party Pi receives msg is at least α

Detection: The set S of parties who deviate from P is non-empty and there is a single Pi ∈ S
such that for all Pj ∈ H, Pj outputs Pi.

That is, for every round, either the protocol was fair, or an adversarially controlled party was
exposed.

4 The Protocol

Our solution to the k-anonymous message transmission problem is similar to Chaum’s [4] DC-Nets
but features two important innovations.

First, we partition the n parties into smaller groups of size M = O(k) such that with high
probability k members of each group are honest. Each group performs essentially the multiparty
sum protocol described in Section 2, where the input Xi is of the form (msg, g), a pair describing
the message msg to be transmitted and the group g of the receiver. This guarantees receiver k-
anonymity as well as sender k-anonymity, because sending to one member of group g is identical
to sending to any other member of g, and there are always k honest participants in each group.

Second, each group runs 2M copies of the multiparty sum protocol in parallel, restricting each
party to transmit in at most one parallel copy, so as to provide fairness. We give a protocol which
allows the detection of at least one non-conforming party in each round where access to this shared
channel was not fair. Since each group has only O(k) non-conforming parties, an adversary can
only cause O(k) protocol failures in each group, and no protocol failure compromises the anonymity
of any honest party. In comparison, previous solutions built around DC-Nets may involve letting
a protocol failure go undetected or compromising the anonymity of a message.

4.1 Description

The protocol will be described in steps for ease of exposition. The first, Protocol 3, will not be
secure against non-participation.
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4.1.1 Transmission

Protocol 3. k-AMT

Precondition: Assume that the n parties are partitioned into groups of size M , with each
group having at least k honest participants (in Section 5 we discuss how this precondition is met).
Below are the instructions to be performed by each group individually. For notational simplicity,
we denote the parties in the current group by P1, . . . , PM , and the public encryption keys of these
parties by PK1, . . . , PKM . “Broadcast” means to send to every other member of the group.

Input: Each party Pi in the group has input gi, the group the receiver belongs to, and msgi,
a message. (msgi, gi) will be interpreted as an element of Zq, where q is a large prime that divides
p− 1 (p is also a prime). We identify (msgi, gi) = (nil, nil), indicating “no message this round,”
with 0 ∈ Zq.

1. Commitment Phase:

• Pi chooses l ← [2M ] and sets Xi[l] = (msgi, gi) and Xi[t] = 0 for t 6= l ∈ [2M ]

• Pi splits Xi[t] ∈ Zq into M random shares si,1[t], . . . , si,M [t] for t ∈ [2M ]

• Pi chooses ri,j [t] ← Zq for all j ∈ [M ], t ∈ [2M ]

• Pi computes commitments Ci,j [t] = Cri,j [t](si,j [t])

• Pi broadcasts {Ci,j [t] : j ∈ [M ], t ∈ [2M ]}
2. Sharing Phase:

• For each j 6= i,
Pi −→ Pj : {(ri,j [t], si,j [t]) : t ∈ [2M ]}

• Pj checks that Cri,j [t](si,j [t]) = Ci,j [t]

3. Broadcast (only within the group) Phase:

• Pi computes the values Ri[t] =
∑

j rj,i[t] mod q and Si[t] =
∑

j sj,i[t] mod q

• Pi broadcasts {(Ri[t], Si[t]) : t ∈ [2M ]}
• All players check that CRi[t](Si[t]) =

∏
j Cj,i[t]

mod p

4. Result:
Each player computes the result as X[t] =

∑
i Si[t] mod q, computes R[t] =

∑
i Ri[t] mod q

and checks that CR[t](X[t]) =
∏

i,j Ci,j [t] mod p

5. Transmission Phase:
For each X[t] 6= 0, each Pi interprets X[t] as a pair (Msg[t], G[t]) and sends Msg[t] to every
member of G[t]
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4.1.2 Fairness

Suppose at the conclusion of the transmission phase, at most M of the 2M values X[t] were non-
zero. Then this execution was fair: each Pi had probability at least 1/2, over its own choices, of
successfully transmitting msgi. On the other hand, if more than M of the X[t] were non-zero,
then at least one Pi had more than one Xi[t] 6= 0. We now describe an honest verifier statistical
zero-knowledge proof that allows each honest party to prove that they set at most one Xi[t] to a
non-zero value, assuming it is hard to compute logg(h) (this allows the honest players to identify
at least one party Pi with more than one Xi[t] not equal to zero).

Informally, this protocol uses the well-known “cut-and-choose” technique: player Pi prepares
new commitments C ′

i[t] to the values Xi[t] and randomly permutes them. Then the verifier may
choose either to have Pi open 2M − 1 of the (permuted) C ′

i[t] values to zero, or to have Pi reveal
the permutation and prove (in zero-knowledge) that he can open the commitments C ′

i[t] and Ci[t]
(for each t ∈ [2M ]) to the same value.

Protocol 4. Zero-knowledge proof of fairness

1. Pi chooses r′[t] ← Zq, t ∈ [2M ], and π ← S2M (a permutation on {1, . . . , 2M}). Define

ρi[t] =
∑

j

ri,j [t] ,

Ci[t] =
∏

j

Ci,j [t] mod p = Cρi[t](Xi[t]) ,

ρ′i[t] = ri[t] + r′[t] mod q ,

C ′
i[t] = Ci[t]hr′[t] mod p = Cρ′i[t](Xi[t])

Pi −→ V : 〈κ[t] = C ′
i[π(t)]〉t=1,...,2M

2. V −→ Pi : b ← {0, 1}
3. If b = 0, then:

• Pi sets l such that Xi[l] 6= 0 if l exists, or chooses l ← {1, . . . , 2M} otherwise.
Pi −→ V : 〈ξ[t] = ρ′i[π(t)]〉π(t)6=l

• V accepts iff hξ[t] = κ[t] mod p for all t 6= π−1(l)

Otherwise, Pi proves that C ′ is a commitment to a permutation of C by revealing π and
proving knowledge of the discrete log of x[t] = C ′

i[t]/Ci[t] = κ[π−1(t)]/Ci[t]:

• Pi picks values σ[t] ← Zq,
Pi −→ V : π, 〈y[t] = hσ[t] mod p〉t

• V −→ Pi : 〈z[t] ← Zq〉t
• Pi −→ V : 〈w[t] = r′[t]z[t] + σ[t] mod q〉t
• V accepts if x[t]z[t]y[t] = hw[t], for all t ∈ [2M ]
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The above protocol is public-coin, honest-verifier statistical zero knowledge. In practice, we may
implement the verifier by calls to a cryptographic hash function and obtain security in the Random
Oracle Model [2], or the verifier may be implemented by the remaining parties through a subpro-
tocol in which each party non-malleably commits to random bits and then reveals the bits; the
randomness used is then the exclusive-or of each party’s random string. So long as there is one
honest verifier this approach will work: a party which refuses to participate in this subprotocol can
be recognized as the cheating party.

4.1.3 Non-participation

Unfortunately, the previous protocol neglects the ability of an adversary to refuse to transmit data
altogether. In fact, this has typically been the hardest of all scenarios to cope with. In such a
situation, it is impossible to arbitrate correctly as to whether the required sender did not send
a message, or the alleged receiver is lying about not receiving the message. An augmentation is
required to Protocol 3 in order to deal with this situation:

Protocol 5. k-AMT2

2. New Sharing Phase:

• For each j 6= i,
Pi −→ Pj : {EPKl

(ri,l[t], si,l[t]) : l ∈ [M ], t ∈ [2M ]}.
• Pj checks that Cri,j [t](si,j [t]) = Ci,j [t]

After each phase of Protocol 3:

1. Timeout Step: For all Pj failing to receive a required message from Pi after the timeout
period, Pj sends a signed “timeout” message T{i, j} to every group member.

2. Correction Step: For each i′ 6= j, l, j′ ∈ [M ], t ∈ [2M ]:

• if the Commitment phase has begun,
Pi′ −→ Pj : {Cl,j′ [t]}

• if the Sharing phase has begun,
Pi′ −→ Pj : {EPKj (rl,j [t], sl,j [t])}

• if the Broadcast phase has begun,
Pi′ −→ Pj : {(Rl[t], Sl[t])}

• Finally,
Pi′ −→ Pj : {T{a, b} : (Pa → Pi : T{a, b}) }

Here, EK(m) denotes the public-key encryption of m with public key K, where E is a semantically-
secure public key encryption scheme. Under this augmentation, the message and round complexity
of the protocol increase by a factor of at most 2, and the bit complexity increases by a factor of M .
For space considerations, we omit the full description and analysis of two alternative schemes which
avoid this factor of M increase in bit complexity. The first reduces bit complexity by modifying the
Correction Step to the Commitment Phase (the first bullet of step 2 above). Rather than having
each honest participant send all M commitment matrices to every other participant, each honest
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participant sends only a randomly chosen subset of size loge M . The robustness of the protocol is
then decreased by an additive factor of 1/M . The second scheme works by tracking which pairs of
participants are unwilling to communicate and constructing broadcast trees which avoid these links
at the expense of extra rounds; the key observation is that, when some participant is no longer
connected to some complete subgraph of size k he can be dropped from the network, so that an
adversary cannot arbitrarily increase the round complexity.

4.2 Analysis

4.2.1 Robustness

Let us now consider the success of all possible attacks against the robustness of the protocol. Note
that whenever an investigation is warranted (any check fails), a simple subprotocol is executed
wherein every player reliably broadcasts every received broadcast from the other players. If a
party is found to have sent different signed broadcasts, it is identified as the cheater. If not, the
investigation continues.

The simplest possible deviation is for an adversary to attempt to jam the channel by transmitting
in more than one slot. However, if access to the channel was not fair, then this is detected with
high probability. Since we have already verified that all broadcasts were made correctly, then each
party has the same commitment matrix (the first broadcast) for every other player. Therefore, the
zero-knowledge subprotocol will detect the cheater with negligible chance of failure.

Theorem 1. Protocol 4 is sound: if for some i, there exist t 6= t′ such that Xi[t] 6= 0 and Xi[t′] 6= 0
then |Pr[V accepts]− 1

2 | is negligible.

Proof. (Sketch) Suppose V chooses b = 0; then, if the commitments C ′
i are formed correctly Pi

must compute logg h (mod p) in order to open one of C ′
i[t], C

′
i[t
′] to zero. If computing discrete

logarithms modulo p is hard, then this happens with negligible probability. Likewise, if V chooses
b = 1, then if the commitments C ′

i are malformed, Pi must compute logh g in order to make V
accept (by the soundness of the discrete logarithm subprotocol in step 3). So for the honest V ,
regardless of the formation of the commitments C ′

i, Pi has probability at most 1/2 plus a negligible
factor of convincing V to accept.

Theorem 2. Protocol 4 is honest-verifier zero-knowledge.

Proof. (Sketch) We exhibit a simulator for the honest-verifier case: flip a coin representing the
bit b in step 2. If b = 0, form the commitments C ′

i[t] = Cr′[t](0) from step 1, choose a random
l ∈ 1, . . . , 2M and reveal r′[1], . . . , r′[l − 1], r′[l + 1], . . . , r′[2M ] in step 3. If b = 1, form the
commitments C ′

i[t] in the same manner as the honest prover, and use the honest-verifier simulator
for the discrete logarithm protocol in step 3.

Given that incorrect broadcasts will always be detected, and non-participation is dealt with, the
only other possible deviation is to send incorrect data. However, because of the use of commitments,
every piece of data is either a commitment that will have to be opened, or the opening of an already
transmitted commitment (or commitment product). Therefore, this deviation will be detected as
long as breaking the commitment scheme is hard.

12



4.2.2 Anonymity

Theorem 3. If group G has at least k honest parties, then Protocol 3 is sender k-anonymous for
group G.

Proof. (Sketch) In each parallel round, the multiparty sum protocol guarantees that no adversary
may determine the inputs of any honest parties; thus the adversary may not distinguish between
the case that Xi[t] = 0 and Xi[t] = Msg[t] for any honest party.

Theorem 4. If every group G has at least k honest parties, then Protocol 3 is receiver k-anonymous.

Proof. (Sketch) Each message sent to an honest party Pi is received by all parties in Pi’s group;
since there are at least k honest parties in this group, the adversary cannot distinguish between
these parties as the recipients.

Theorem 5. If the precondition for Protocol 3 holds, Protocol 4 and Protocol 5 together give a
1
2 -robust k-anonymous transmission protocol.

4.2.3 Efficiency

Because we detect cheaters with high probability, we may consider the typical case to be when
all participants follow the protocol exactly except for non-participation. In this case the round
complexity is 4, plus at most 3 correction steps. In terms of message complexity, we transmit
O(M2) = O(k2) messages for every anonymous message sent. The bit complexity per anonymous
bit sent is O(k4) in the worst case. Because k is unrelated to n, the number of participants, this
protocol scales very well.

In the case where O(k) parties send anonymous messages per round, the Transmission Phase
of Protocol 3 still transmits O(k2) protocol messages for every anonymous message sent. How-
ever, there are alternate strategies that allow amortizing message complexity over the anonymous
messages of the group.

One alternative is to replace this transmission phase by another in which, for each t such that
X[t] 6= 0, each Pi randomly chooses d c

1−β e members of G[t] and sends Msg[t] to those parties. In
this case, when O(k) parties transmit anonymously the ratio of protocol messages to anonymous
messages is O(k), and the ratio of protocol bits to anonymous bits is O(k3). However, all of the
honest parties of the sending group fail to send to the intended recipient of Msg[t] with probability
e−c/2. This condition is undetectable by the anonymous sender, thus requiring forward erasure
correction over message blocks.

Another alternative trades round complexity for message complexity in the “best case”: After
each Pi in the sending group computes X[t], Pi sends Msg[t] to the ith member Qi of G[t]. Each Qi

then sends Pi a signature on Msg[t]. Finally each Pi collects all such signatures and broadcasts these
signatures to the other members of his group. In this alternative, the round complexity increases
by 2, but again when O(k) anonymous messages are transmitted the ratio of protocol messages to
anonymous messages is O(k) and the ratio of protocol bits to anonymous bits is O(k3); and any
member of the sending group who fails to forward anonymous messages is caught. However, this
alternative is not secure against non-participation.

We intend for our protocol to be used over the Internet or networks of similar characteristics.
Our protocol is particularly efficient in such networks, since throughput is frequently constrained
by network latency, and our protocol has low round complexity.
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Notice also that the zero-knowledge subprotocol is very efficient: with security parameter λ (the
number of parallel repetitions of Protocol 4), the number of rounds is constant, the total number
of bits transmitted is O(kλ lg p), and a non-conforming party is caught with probability at least
1− 2−λ. However, even if it were less efficient, since it need only be executed when cheating takes
place, and all cheaters can be caught with high probability, the cost of detection when amortized
over many rounds is essentially zero.

5 Network Construction

The protocols in the previous section work for any network which has already been partitioned
into groups. Here we present several strategies related to the efficient, scalable construction and
management of this group structure.

5.1 Group Size

We set the group size to M = 2k
1−β (recall that β is the fraction of participants that the adversary can

control) so that when the groups are chosen at random, with high probability at least k members
of every group are honest: a multiplicative Chernoff Bound tells us that for any group G,

Pr[|H ∩G| < k] ≤ e−k/4 ,

so the probability that any group does not maintain k-anonymity decreases exponentially with k.
For small k this probability can be computed directly for a tighter bound.

5.2 Group Formation and Management

We propose that a simple protocol be used to construct the groups. The formation of groups
should be such that parties cannot choose which group they belong to. In an initialization phase,
interested parties may securely construct the list 〈P1, . . . , Pn〉 either through a small group of
trusted registration servers or through a secure group membership protocol such as that of [15].
The parties then choose a session identity S, for example, using a cryptographic hash function H
applied to the initial parameters of the network. The number of groups is determined as the largest
power of 2 smaller than n(1− β)/k, say 2m. Then each Pi determines their group number by the
m least significant bits of H(S||Pi); thus any party, given the list of participants, can determine
the group of any other party, and the other participants in his own group.

5.3 Optimizations and Concerns

5.3.1 Minimizing Turnover

If a significant number of honest parties leave the network (even temporarily) then the k-anonymity
property may sometimes be violated. A possible approach to minimize this risk is by charging a
high computational cost to rejoin a group, using a protocol such as Dwork and Naor’s moderately
hard functions [8] or Back’s Hashcash [1].
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5.3.2 Rate Adjustment

Notice that a significant barrier to the implementation of a fully anonymous protocol such as DC-
Nets is the need to fully synchronize n hosts when n is large. In the protocol proposed here, there
is no such requirement — the groups may operate asynchronously of one another. Because of that,
each individual group may optimize its time between rounds to approximate the average sending
rate of the group. This can be accomplished automatically using the fact that the outcome of the
protocol gives a good estimate of the number of parties transmitting each round; so if no parties
transmit, an additive increase in the intra-round gap may be used, and if many parties transmit, a
multiplicative decrease may be used, as in other fair communications protocols.

6 Conclusions

We have introduced the notion of k-anonymous message transmission by analogy to the concept of
k-anonymity from the privacy literature. Using this notion we are able to give simple and efficient
protocols for anonymous message transmission which have provable security against a very strong
adversary. We believe an interesting avenue for further research is to investigate whether other
multiparty computation tasks can also be simplified using a similar approach, i.e. by weakening
the security goals in a manner which is still sufficient for many applications. We also believe
an important future step is the implementation of our protocol in order to determine the actual
overhead introduced and the achievable throughput.
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A Protocol 2 does not need Reliable Broadcast

One technical point is not addressed in our presentation: since we avoid the use of reliable broadcast,
is it possible for an adversary to disrupt the protocol by sending different messages to different
parties in place of broadcasts? It is intuitively clear that the commitments used in the multiparty
sum protocol (Protocol 2 ) prevent this situation as long as all parties participate; but since we
are not aware of a published proof to this effect, we outline one here. The idea of the proof
is conceptually simple: first we show that no single adversarial party may force an inconsistent
outcome, and then we show that any set of k adversarially controlled parties can be successfully
simulated by a single party. The result follows.

Lemma 1. For any n, if discrete logarithms in Z∗p are hard, no single party may cause two honest
parties to compute different outputs in Protocol 2 .

Proof. There are only two opportunities for the adversary (without loss of generality, P1) to cheat
via the lack of reliable broadcast: he may send (at least) two different commitment vectors {C1,j :
j ∈ [n]} in step 1, or he may send two different sum values (R1, S1) in step 3. Note first, that if any
attempt at step 1 will be caught, then the adversary is constrained by the commitment protocol
in step 3. Thus it remains to prove that any attempt to send two distinct commitment vectors
{C∗

1,j}, {C†
1,j} is subsequently caught. To see that this is true, notice that there must be some j,

such that C∗
1,j 6= C†

1,j . Without loss of generality, suppose j = 2. Furthermore, at least one party
must receive C∗, and at least one must receive C†, without loss of generality, suppose these parties
are P2 and P3, respectively. Now, suppose that P1 incorrectly opens C∗

1,2 to P2; obviously this is
caught by P2 in step 2. Otherwise, suppose P1 correctly opens C∗

1,2 to P2; then when P3 receives the
value (R2, S2) = (r∗1,2 +

∑
j≥2 rj,2, s

∗
1,2 +

∑
j≥2 sj,2) from P2, and checks if gS2hR2 = C†

1,2

∏
j≥2 Cj,2,

this check will fail since C∗
1,2 6= C†

1,2, by assumption.

Lemma 2. Any group of k (out of n) adversaries who cause two honest parties to compute different
outputs in Protocol 2 with significant probability may be simulated by a single adversarial party (out
of n− k + 1) with the same success probability.

Proof. Without loss of generality, denote the k adversarially controlled parties of the hypothesis by
Pn−k+1, . . . , Pn, and let ` = n−k. We will show how a single adversarial party Q may simulate the
interaction between the honest parties P1, . . . , P` and the adversarial parties. First, without loss
of generality, assume the parties P`+1, . . . , Pn to be delaying adversaries: that is, all adversarially
controlled parties wait until every honest party has spoken in each round. (If they do not wait,
they can be rewritten to do so without decreasing their success probability) Then Q can simulate
the honest parties to P`, . . . , Pn as follows:

1. Commitment Phase: When Pi sends Q the commitment Ci,`+1, Q computes a random
sharing of this commitment:

• Q chooses k random shares s′i,`+1, . . . , s
′
i,n subject to

∑
j s′i,`+j = 0.

• Q chooses k random values r′i,`+j ∈ Zq.

• Q computes C ′
i,`+1 = Ci,`+1h

s′i,1gr′i,`+1 , and C ′
i,`+j

= gs′i,`+jhr′i,`+j for 2 ≤ j ≤ k.
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• Q sends {Ci,j : j ≤ `}, {C ′
i,j : ` < j ≤ n} to each adversarially controlled party.

2. Sharing Phase: when Pi sends Q the values ri,`+1, si,`+1, Q sends (ri,`+1 + r′i,`+1, si,`+1 +
s′i,`+1) to P`+1, and (r′i,`+j , s

′
i,`+j) to P`+j , for 2 ≤ j ≤ k.

3. Broadcast Phase: When Pi sends (Ri, Si) to Q, Q sends (Ri, Si) to each P`+j .

Notice that by following this procedure, Q perfectly simulates the honest parties to the adver-
sarial parties. In the opposite direction, Q emulates P`+1, . . . , Pn to the honest parties as follows:

1. Commitment Phase: If each P`+i sends the commitment vector {Cj
`+i,l} to Pj , then Q

sends the commitment vector {∏i C
j
`+i,l} to Pj .

2. Sharing Phase: If each P`+i sends the value (r`+i,j , s`+i,j) to Pj , then Q sends the value
(
∑

i r`+i,j ,
∑

i s`i,j) to Pj .

3. Broadcast Phase: If each P`+i sends the value (Rj
i , S

j
i ) to Pj , then Q sends (

∑
i R

j
i ,

∑
i S

j
i )

to Pj .

If the messages sent by P`+1, . . . , Pn all pass all of the checks in Protocol 2, then so do the messages
sent by Q. Thus Q forces an inconsistent outcome with the same probability as P`+1, . . . , Pn, as
claimed.

Theorem 6. If discrete logarithms in Z∗p are hard, no adversary may cause two honest parties to
compute different outputs in Protocol 2 .

Proof. The theorem follows by the conjunction of lemma 1 and lemma 2: since any k adversarial
parties can force an inconsistent outcome with the same probability as some individual party, and
no individual party may force an inconsistent outcome if discrete logarithms in Z∗p are hard, then
if discrete logarithms in Z∗p are hard, no adversary (controlling any number of parties) may force
an inconsistent outcome.
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